THE POLYNOMIAL CONJECTURE FOR MONOMIAL REPRESENTATIONS OF DISCRETE TYPE OF AN EXPONENTIAL SOLVABLE LIE GROUP

BAKLOUTI ALI

Abstract:

Aligning with Harish-Chandra's pioneer works on the representation theory of reductive Lie groups, I will define the notion of a monomial representation $\tau = \operatorname{ind}_{H}^{G} \chi$ of discrete type, where $G = \exp \mathfrak{g}$ is an exponential solvable Lie group, H an analytic subgroup of G, and χ a unitary character of H. I will then talk about the related Plancherel theory and consider the polynomial conjecture, stating that the algebra $D_{\tau}(G/H)$ of G-invariant differential operators over the line bundle associated with the data (G, H, χ) consists of a polynomial ring, isomorphic to the algebra $\mathbb{C}[\Gamma_{\tau}]^{H}$ of H-invariant polynomial functions on an affine subspace $\Gamma_{\tau} \subset \mathfrak{g}^{*}$.

1

This is a joint work with H. Fujiwara and J. Ludwig.